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1 Introduction  
Team AGV is a student initiated research group of IIT Kharagpur committed to the long term vision of developing a 

viable and affordable driverless car. Since its inception in 2011, the team has carried out active research in autonomous 

technologies and has started projects like Digital City Mapping and All Terrain Mine Rover. The team has participated in 

IGVC 2012 with the team’s landmark vehicle - Eklavya and is currently looking forward to participating in IGVC 2013 

with the new and improvised Eklavya 2.0. 

1.1 Team Organization 

 

Figure 1: Team Structure 

The team consists of undergraduate and postgraduate students belonging to interdisciplinary backgrounds viz., Computer 

Science, Electrical and Mechanical Engineering and is mentored by Professor Debashish Chakravarty of the Department 

of Mining Engineering, IIT Kharagpur. The team members are pursuing this project out of their passion for robotics in 

addition to their academic activities. The team spent an approximately 2400 person hours in design and development of 

Eklavya 2.0.  

1.2 Design Process 
The current design of Eklavya 2.0 is a significant improvement in each of 

the engineering aspects over its predecessor. Learnings from last year’s 

failure have played a key role in developing Eklavya 2.0. CAD modelling 

and simulation was used extensively for tuning the mechanical design 

parameters such as the track width ratio for a single castor single 

differential vehicle. Last year’s code base consisted of one single thread 

which calls all the modules whereas, this year’s analysis and design led to 

a hybrid mechanism which combines a publisher-subscriber mechanism 

with multi-threading paradigm. The modules were iteratively decoupled 

to achieve a system with minimal inter-dependency.  

2 Innovations 
Some of the major innovations implemented on Eklavya 2.0 compared to its previous versions are given here.  

2.1 Mechanical 
 Chain based transmission for reduced radial loading on the motor shafts. 

 Aluminium extrusion rods for improved flexibility during the manufacturing process. 

 Machined motor hubs eliminated the problem of motor-wheel misalignment which occurred predominantly in 

Eklavya 1.0. 

Figure 2: Design Process 



2.2 Electronics 
 Wheel Odometry has been implemented which estimates the position of the bot based on the observed wheel 

velocities sensed by wheel encoders. 

 Extended Kalman Filter (EKF) has been implemented to improve the accuracy of the localization algorithm 

beyond the 2.5 m limit set by the GPS/INS system. 

 The system is made fault tolerant by adding a backup motor-controller to ensure continuous autonomous 

operation in case of failure of the primary controller. 

2.3 Software 
 A distance transform based planning algorithm is implemented to create paths that naturally avoid obstacles and 

reach the target while ensuring that the planner would not get stuck in local minima. 

 A blob based image filter has been implemented on the lidar data as a part of pre-processing to remove the noise 

that appears due to sunlight in the output of an indoor lidar. The low cost indoor lidar (an outdoor version costs 

almost 3 times) can now be used in outdoor environments and in strong sunlight. 

 An adaptive lane detection algorithm invariant to changes in ambient intensity and surface texture has been 

implemented. 

 Switched to the Robotics Operating System (ROS) for the software architecture.  

 The Gazebo simulator has been used in parallel to development on the master platform. This has helped to figure 

out high level issues with the code flow, planning and strategy.  

3 Mechanical Design 

3.1 Vehicle Design Specifications 
 

Table 1: Vehicle Specifications 

Parameter Specification 

Dimensions 62.3 cm x 59 cm x 109 cm 

Weight 45 kg (excluding payload) 

Payload Capacity 40 kg 

Peak speed possible 2.06 mph 

Average running speed 1.5 mph 

Drive mechanism Single caster differential drive 

Power Train Front wheel Powered Chain Transmission  

Battery specifications ( 12V, 26AH ) x2 

3.2 Chassis 
Eklavya 2.0 is a three-wheeled differential drive mechanism consisting of two motor powered front wheels and a rear 

lightweight swivel caster. The modular design of the chassis allows one to assemble the robot from scratch in less than 2 

hours. Such a modularity helps in easy replacement of parts and make the robot portable over long distances. The payload 

carrier along with a carrier for the 9 kg battery is built into the rear part of the chassis above the caster. The electronic 

stack is built on a sliding platform on the front, upper part of the vehicle for easy debugging.  The overall chassis is built 

with galvanized 20 mm x 20 mm extruded aluminium bars, polycarbonate and polypropylene panels. 

 

 



3.2.1 Skeleton Structure     
The skeleton is made up of light weight 20 mm x 20 mm extruded aluminium bars which pack 

a great strength for their size. They have a linear density close to a hollow bar but the tensile 

strength of a solid bar of the same dimension. The extruded bars have the flexibility of fixing 

the fastening elements without the need for drilling as they have inbuilt grooves along the 

length for placement of the M-5 and M-6 T-nuts. The edges of the grooves are bent inwards 

by an angle of 2𝑜. When fastened to the right extent, the groove edges keep pressing against 

the nuts, thus increasing the grip. The joints which are usually vulnerable to vibrations can 

now be made robust, thanks to this design. Besides L-shaped bends, aluminium plate of 

different shapes have been used at several joints, corners and junctions to increase their stress 

bearing capability.  

3.2.2 Panels and Waterproofing 
Polycarbonate sheets of 3 mm thickness are majorly used for making the panels to reduce the weight of the robot while 

achieving basic protection against dust and rain. The motor controller panel is situated just above the motor hubs and is 

made of a 3 mm thick polycarbonate panel. Similar panels are used to cover all the external faces to protect the vehicle 

from dust and rain. A sensor panel located between the two motor hubs houses the IMU which is strategically placed to 

be at the CG of the vehicle. This also houses the lidar and the GPS/INS. The switchboard is made out of a 6 mm thick 

polypropylene panel located on the wedge shaped structure above the laptop. A safety bumper is designed at the front end 

to protect the sensors and the panel. 

3.3 Wheels 
Based on several iterations, the team finally arrived at the decision of using pneumatic wheels of 200 mm diameter. A 

swivel caster of 165 mm diameter with an aluminium core and a load capacity of 250 kg has been used due to its red 

polyurethane tread which is best suited for grassy, rough terrain and undulated surface. 

3.4 Motor Hubs 
Instead of the direct coupling of the motor shaft with the wheel axles, a simple chain-sprocket system is used for 

transferring the load from the chassis directly on to the wheel axles made of solid steel and bypassing the motors. This 

effectively reduces the radial loading on the motor shafts which are not capable of bearing this load. In each hub, the 

chain passes through four sprockets out of which one acts as the idler. The idler sprocket slides in a vertical slot such that 

it causes uniform tension in the chain sprocket mechanism. The idler helps in enlarging the surface of contact between 

the chain and the sprockets thus increasing the efficiency of load transfer. 

3.5 Machining 
Jig saw machine is used for cutting the aluminium bars, polycarbonate and polypropylene panels.  These plates have been 

cut to the desired shapes using the jig-saw machine, electric grinder, milling machine, electric drilling machine. Other 

than the skeleton of the vehicle, the above mentioned machines have also been used for the fabrication of wheel-motor 

hub which is made of galvanized aluminium plates of 6 mm thickness and consists of complex chain-sprocket mechanism. 

The individual components of this chain-sprocket system is built by mechanical team members using band-saw machine, 

lathe machine, electric drilling machine and milling machine. 

3.6 Payload Capacity 
Eklavya 2.0 is designed while keeping in view of the requirement to carry a decent weight of about 40 kilos in addition 

to its own including the battery. Several tests have been conducted with a battery load of 9 kilos, a payload of 10 kilos 

and a 19 kilo 3D Lidar together at various surfaces under different conditions viz., high slopes, moisture rich surfaces and 

Figure 3: Lock Mechanism 



sharp turning areas. 

3.7 CAD Model 
In the pre-designing phase, after deciding the drive system and 

some basic mechanical specifications, the team developed a 3D 

CAD model of Eklavya 2.0 using Solid Works 2012. The model 

was developed by considering the all measurements which were 

calculated for the actual vehicle. The design thus conceived had 

been tested by simulation on the model at various load conditions 

and surfaces. The final CAD model has been shown in the 

adjacent figure.  

3.8 Drivetrain 
Eklavya 2.0 is a front powered wheel differential drive system 

with a single swivel caster wheel at the rear.  

3.8.1 4-Powered Wheels vs. 2-Powered 
Wheels 

A skid steer drive with 4-powered wheels would have a large skid 

friction. This has to be overcome by the driving wheels and this 

requires that the motors have enormous torque. Thus, such a 

model cannot make turns easily. Instead, 2-powered wheels with 

castors would be a more efficient alternative. 

3.8.2 Front Caster vs. Rear Caster 
Keeping the caster at the front of the vehicle would make the 

robot sway in the direction of the caster which is usually 

controlled by the motion of the powered wheels. However, on 

rough and undulated surfaces, the caster generates its own 

direction at every moment which makes the robot deviate from the desired path. So, the caster in Eklavya 2.0 is placed at 

the rear of the vehicle.  

3.9 Centre of Mass 
As a three-wheeled robot with a trailing caster, Eklavya 2.0 takes turns around the axis passing through the geometric 

centre of the frame, halfway between the front powered wheels. As the wheel hubs weigh a little less than that of the rear 

part which shifts the centre of mass of the vehicle towards rear part, in order to bring the centre of mass close to the centre 

of the vehicle, a laptop hub and a wedge-shaped structure is designed on top of the front part of the chassis. The wedge 

houses the switch control board, cameras, E-Stop, safety indicator lights. 

4 Electronics 

4.1 Motor Controller 
Eklavya 2.0 uses the Motor Controller MDC2230 from Roboteq. Having successfully implemented PID control in 8-bit 

ATmega microcontroller, we decided to make the electronics system robust by introducing a more precise 32-bit 

commercial motor controller. Roboteq controllers are used in Automated Guided Vehicles and have built in features 

supporting some common utilities such as Encoder Data Acquisition, Current Sensing, PID, RC Remote Integration, E 

stop etc. The support for the RC remote enables ease of switching to manual control. The priority of the manual control 

Figure 4: CAD Model 



through wireless remote is set greater than serial data transmission, enabling the Eklavya2.0 to swiftly toggle into manual 

mode, once the RC controller is activated. This is a significant improvement over Eklavya 1.0, which had the original 8-

bit ATmega micro-controller and hercules-16v-16amp motor driver. But the system is made robust by using a two stage 

controller where the second stage is the original ATmega microcontroller which is activated in case of failure of the 

primary controller that is Roboteq. 

4.2 Control Algorithm 
The control algorithm implemented is the Proportional Integrative and Derivative Control (PID) on the speed of the 

motors. In the Roboteq controller, although a high frequency inbuilt PID controller attempts to achieve the desired set 

speed, it was required to tune the constants as per our requirements to get the optimum response. On the ATmega controller 

(secondary), the team scripted the PID algorithm, which runs at a frequency of 100Hz and takes an average of 3-4 cycles 

(30-40ms) to achieve an almost zero error (stabilization). Any failure of the Roboteq controller, indicated by its status 

registers, was routed to a digital pin. This pin drives a relay that flips the control to the ATmega Controller. 

The tuning was done using the Ziegler-Nichols Rule. It involved setting each gain to zero and increasing 𝐾𝑝 till 

oscillations occur (let it be 𝐾). The time period of oscillations were noted and 𝐾𝑑 and 𝐾𝑖 were calculated as: 

𝐾𝑝 =
𝐾

2.2
, 𝐾𝑖 =

1.2 ∗ 𝐾𝑝

𝑇
, 𝐾𝑑 = 0.0 

The 𝐾𝑑 value was set to zero as the system's response was quick enough to recover from its former speed. The electronics 

team is currently developing more robust algorithms for PID using fuzzy logic to check for possible improvements. 

4.3 Sensors 
Eklavya 2.0 is equipped with high-end 

robust sensors that have been phenomenal 

in accurate, high-speed and reliable 

automation. 

4.3.1 Laser Scanner 
The vehicle uses a laser scanner from 

Hokuyo with a view angle of 240° and 

gives 652 readings which are spread equally 

throughout the range at rate of 10 scans per 

second. The range of laser scanner is 4m 

which is sufficient for our planning 

algorithm. 

 

4.3.2 Logitech Colour Camera 
The Logitech QuickCam Pro 9000 colour camera is installed which gives high definition video (1600 × 1200) at 30 

frames per second. The camera has inbuilt auto focus and blur removal which maintains the video quality when the vehicle 

is in motion. It has a high horizontal field of view (600) which makes it possible to detect both the lanes simultaneously. 

4.3.3 Microsoft Kinect 
Kinect for Xbox 360 is used for detection of flags. The Kinect camera gives high definition video at 30 frames per second. 

This sensor is used as an extra camera in addition to the Logitech camera since the latter camera could miss the 

obstacles/flags in front because of its orientation w.r.t horizontal which is 450. 

Figure 5: Electronic System Architecture 



4.3.4 Wireless Manual Controller and Wireless E-Stop 

Eklavya 2.0 is programmed to be controlled by a “Flysky FS-CT6B 2.4GHz 6CH Transmitter and Receiver”. Two of the 

channels provided by the RC receiver are used to control the directional velocities through the primary Roboteq controller. 

The secondary ATmega32 controller is configured with a Bluetooth Module. An Android App has been designed that 

connects to this Bluetooth module and commands the bot when it is being controlled by the ATmega32 controller, during 

the manual operation.  

The wireless E-Stop is engaged as soon as the wireless RF controller is turned ON. The priority of this controller has been 

set higher than Serial transmission, enabling immediate stop as soon it is turned ON with buttons set to zero velocity. The 

RF Receiver is hardware-hacked and connected to the Reset of the ATmega controller, thus, turning it OFF as soon is the 

RF Transmitter is turned ON. 

4.3.5 VN-200 INS/GPS 
The VN-200 is a miniature high-performance GPS-Aided Inertial Navigation System that combines MEMS inertial 

sensors, a high-sensitivity GPS receiver and advanced Kalman filtering algorithms to provide optimal estimates of 

position, velocity and orientation for industrial applications.  

We used VectorNav’s C/C++ software library to fetch data through the INS solution provided by the sensor. This 

gives us thermally and magnetically corrected pose with a horizontal dynamic accuracy of 2.5 meters. The latitude, 

longitude and altitude that were obtained from the sensor were published directly giving us the current location. The static 

accuracy of the sensor is nearly 5 meters due to which the INS data from the sensor was fused with the odometry data to 

get higher accuracy. Extended Kalman Filter (EKF) was applied on the odometry data, IMU orientation and latitude 

longitude from the GPS to accurately localize the vehicle in 3D. 

4.3.6 9 DOF IMU from Sparkfun  
The yaw data that we need for target location was obtained from a 9 DOF IMU from Sparkfun. The yaw data from the 

VN-200 which has a static accuracy of +-20 was not as accurate as the Sparkfun’s IMU. 

4.4 Motors 
Eklavya 2.0 uses reversible DC geared Midwest Motion Motors equipped with a 1024 CPR quadrature encoders. The 

maximum output speed is 86 RPM delivered at an internal gear ratio of 50.89:1. The rated continuous torque provided is 

111 in-lbs. The motors run at 12V DC and has a rated continuous current of 15A.  

As per the requirements of IGVC, we needed our bot to move at a speed of 1.5 mph. With a wheel diameter of 8 inch, the 

required angular velocity of wheels was 71 RPM. After the mechanical calculations, the continuous torque requirement 

came out to be 110 in-lbs.   

4.5 Computing Hardware 
Eklavya 2.0 uses a Lenovo Z580 laptop with 4GB RAM running Ubuntu 12.04 and ROS on an i5 processor augmented 

by a 1GB graphics card. The control for the motors are implemented on the Roboteq motor controller, which is connected 

to the laptop using an USB-RS-232 interface. All of the other sensors viz., the lidar, GPS/INS, camera, IMU, Kinect are 

all connected via an USB Interface to the laptop. 

4.6 Control Hub and Dashboard 
The Eklavya 2.0 houses an electronic Control Hub for the motor controller circuitry right above the motor hubs. The Hub 

houses the Roboteq motor controller and the backup ATmega controller. Connections from the battery enter the panel and 

those from the panel exit at sensors, motors, switches, flash lights, E-Stop etc. The Hub has a sliding panel that helps in 

easy debugging of the electrical equipment. A cooling arrangement using fans is also implemented for the control hub. 

The dashboard is on the top of the bot for easy access to the main power button, switches, E-Stop and several indicator 



lights. 

4.7 Power System 
Eklavya 2.0 uses two Amaron Quanta 12V, 26Ah, lead acid 

batteries as the power source which provide unregulated power 

through a series of switches to the different modules. An 

inexpensive DC-DC convertor is used to scale down the voltage 

to 5V to power the USB Hub to run the individual sensor modules. 

Fuse wires of appropriate rating has been used with each module 

to minimize electrical damage. 

A proper switching logic for operation of different individual 

modules has been implemented on the Dash-Board. The failure of 

the Primary Roboteq controller, indicated by a Digital Pin, 

switches relays causing transfer of power and motor controls to 

the secondary ATmega Controller, which consequently 

undertakes the responsibility. The computing hardware i.e. Laptop with its own battery has a battery life of more than 4 

hours. 

4.7.1 Power Utilization Table (Worst Case) 
 

Sl. No. Component Voltage (V) Current (A) Power 

(W) 

1 Motor + Roboteq 12 15(x2) 360 

2 Hokuyo Lidar 5 0.7 3.5 

3 Camera 5 0.250 1.25 

4 GPS/INS 5 0.5 2.5 

5 IMU 5 0.1 0.5 

6 Kinect 12 1.08 12.96 

7  Cooling Fans 12 0.42 (x4) 20.16 

8 Flash Lights 12 1.4 16.8 

Total   35.71 A 417.67 W 

 

 According to the above calculations, Life Expectancy of the battery was found out to be 
52𝐴ℎ

35.71𝐴
 ≅ 𝟏. 𝟒𝟓 𝒉𝒐𝒖𝒓. 

4.8 Safety Considerations 
The safety features include an E-Stop button installed on the dashboard. A wireless E-Stop arrangement has also been 

provided that can stop the bot from a remote distance (minimum 100 feet) as per IGVC requirements. The E-Stop buttons 

cut the power to the H-Bridges that control the motors. The Roboteq controller provides a programmable current limit 

(which is set to 15A) that limits the maximum current flowing though the motors. A wireless, manual-to-autonomous 

switch toggles between the two modes. As a safety indicator, flashing light has been installed on the panel that keeps 

blinking when the bot is in autonomous run condition. 

Figure 6: Power Flow Diagram 

Table 2: Power Utilization Table  



5 Software Architecture 
 

 

A new architecture is used for Eklavya 2.0 which makes use of both the publisher subscriber message passing of ROS 

and threads of C++. The three main components of the system are the drivers, core and simulator. A purely threaded 

architecture is notorious for the presence of dead locks. These can be taken care of by using a publisher subscriber message 

passing paradigm. A pure message passing system is again not advised due to the large network traffic generated by 

publishing bulky images wrapped up as messages. We combined the merits of both these domains by using threads for 

accessing all the maps via mutex and messages for accessing all the other data types. 

5.1 Drivers 
Each sensor has its own ROS node which publishes the data in a standard format. The drivers can be launched independent 

of the core which allows easy debugging. Also, the novel rosbag approach allows one to record the messages from the 

driver publishers and replaying them at ease. 

5.2 Core 
The core is essentially a threaded architecture with the major data structures viz., maps, bot pose etc., shared among them 

in the form of global variables. The subscriber threads subscribe to the device publishers. On receiving the messages, they 

update the corresponding shared variables via mutex constructs. The processing threads then act on this shared data and 

make intelligent decisions. The data processing threads handle image processing and EKF. The strategy thread decides 

the strategy to select based on whether flags and lanes are visible in the camera view. The strategy can be either to follow 

the lanes or navigate around the flags. The global planner considers all the GPS waypoints and selects one of them as the 

next immediate target to follow and in the process, checks out previous ones. The local planner is given a local map and 

a local target and is entitled with planning the path locally. Once a plan is formed, the controller is responsible for keeping 

the bot on the path until a new one is decided. 

The core has a threaded structure with each thread running a module. The first layer is the subscriber threads that 

Figure 7: Software Architecture Diagram 



subscribe to the messages published by the device publishers. On receiving the messages, they update them in the shared 

variables.  

5.3 Simulator 
Since the messages being used are in the ROS standard format, the simulator is completely compatible with the core. The 

compatibility ensures a seamless transition between the vehicle and the simulator.  

6 Sensor Processing 

6.1 Lane Detection 
The lane detection module subscribes to image published by the camera publisher. The detection algorithm is then applied 

followed by inverse perspective transform to re-project lanes 

into real world coordinates with respect to the vehicle. Lanes 

are then updated in the shared memory for the local map.  

6.1.1 Data Acquisition 
The colour camera node published data at 30 frames per second 

(FPS) while the FPS of the lane detection algorithm is 10. The 

subscriber thus keeps a buffer of 2 frames removing the older 

ones as new frames are received.  

6.1.2 Colour based detection 
As the lighting conditions and lane colours keep on varying 

during run of vehicle, it poses a challenge for standard colour 

threshold techniques in vision processing to detect lanes 

correctly. To overcome this problem, we convert the image to 

the 𝑌𝐶𝑏𝐶𝑟 colour model where 𝑌 carries luma information 

and 𝐶𝑏, 𝐶𝑟 are responsible for imparting colour to image. We use 

only the Y component to segment lanes. 𝑌𝑎𝑣𝑔 (Average value of 𝑌) and 𝑌𝑠𝑡𝑑 (standard deviation of 𝑌) are computed. Pixels 

Schematic of Lane Detection Figure 8: Gazebo Simulator implementing Graph-SLAM 

Figure 9: Lane Detection Algorithm 



having 𝑌 value greater than 𝑌𝑎𝑣𝑔 +  𝐾 ∗ 𝑌_𝑠𝑡𝑑 are classified as probable lane pixels. 

Clearly this thresholding method can give erroneous results depending on the values of 𝐾. This is taken care of 

by choosing a relatively soft threshold value for 𝐾 so that none of the lanes pixel are missing. The other false positives 

are taken care of subsequently in the algorithm. Generally 𝐾 value is chosen to be 1 for grass and 2 for roads.  

6.1.3 Edge based detection 
A distinctive property of the lane markings in image is sharp the change in intensities and hence presence of strong edges 

along them. Therefore we apply canny edge detection to detect strong edges in image. The lower threshold value in canny 

algorithm are kept relatively small so as to preserve continuity in edges. The obtained edges are then subjected to 

probabilistic Hough transform to get lane edges as line segments. The advantage of using Hough transform is that it is 

able to approximate even curved lanes as set of line segments which otherwise has to done using cubic spline fitting 

which is computationally very heavy. The length value of line segments is set relatively on higher side to ignore small 

edges which may be present due to some other objects in frame. 

6.1.4 Removal of false positives 
Both the thresholding and Hough line method can output false lanes, especially in thresholding as it is very difficult to 

find fine threshold values. To overcome this problem, we take intersection of both the results so that only the points 

satisfying the colour, edge and line property are selected as possible lane markings. This automatically removes all the 

false positives from both methods. 

6.1.5 Inverse Perspective transform 
The angle of view of camera and distance of objects from camera contribute to associate different information to each 

pixel (perspective effect). The detected lanes need to be plotted on local map of the vehicle. For this, we need to first take 

care of the perspective effect on the image. To cope up with it, inverse perspective mapping is used which removes the 

perspective effect from the acquired lanes, thus remapping them to a new 2D domain where information content is 

homogeneously distributed among all pixels. Now the points from this new domain are mapped to real world coordinates 

by multiplying them with constant matrix obtained by calibration. 

The calibration is very time consuming as it needs to manually choose landmarks and measure distance between 

them. To overcome this problem we developed automated calibration system using a rectangular checkerboard. It 

automatically detects corner of the checkerboard and calculates warp matrix for IPM using dimension of the board known 

apriori. 

 

 

 

Figure 10: Image Processing Pipeline 



6.2 Obstacle Detection 
The obstacle map is built using only the 2D-LIDAR. The ranges obtained from the sensor are initially plotted as it is in 

an image map. Then a threshold is applied on area of blobs detected from the image which acts as a filter for noise. The 

reason for applying this filter lies in the fact that the noise which occurs in the sensor data is irregular. The abnormal 

peaks or trenches that are formed are of variable thickness but they are not very thick i.e. their thickness will be less. So 

the cluster of noise can be filtered according to the threshold applied on the size of the obstacle. Once calibrated for a 

certain environment this filter removes nearly all of the noise. But this filter also poses some drawbacks such as the 

following. 

 It has to be calibrated for each different environment. For indoors, the minimum threshold works at any value 

less than the obstacle size but in presence of very bright sun we keep a threshold value for nearly 5-15 cm 

thickness (blobs contain 100-200 pixels) to avoid the random noise. 

 The calibration is to be done so that it does not exclude the fence since the thickness of fence is very less. 

 

Figure 11: Obstacle Detection using 2D Lidar 

7 Data Processing 

7.1 Sensor Data Fusion 
The local maps obtained individually from the lidar and the camera have origins different from that of the vehicle. Thus, 

these maps should be transformed independently to fuse the correct set of pixel values. Confidence of each sensor is 

calculated by taking 100 data points and the resulting fused image is obtained by taking a weighted mean of the individual 

observations with confidence measures as the weights. 

7.2 GPS Way Point Tracking 
The latitude, longitude and altitude, once obtained from the GPS/INS publisher, give the current location of the bot. An 

additional record is kept for the target points. Given the bot’s current location, the distance from the target location can 

be obtained. Using the yaw obtained from the yaw publisher, the orientation of the target with respect to the local frame 

is calculated. These coordinates are first converted into the East-North-Up (ENU) co-ordinates. By considering them as 

the origin, we can calculate the global target.  

When the bot closes on the current target within a given radius (say within 20cm), the target in the Navigation 

is modified to the next target. Once the final target is reached, the initial position is set as the current target so that the bot 

can complete the course. 



7.3 Wheel Odometry & Localization 

Wheel odometry is concerned with localization using encoder counts. 

Conventionally, calculating the position with wheel odometry includes 

counting the left and right encoder counts and taking the average. A 

slight improvement in this method will be to include the deviation from 

the original path. The following are some calculations: 

𝐷 = (𝑙𝑒𝑓𝑡_𝑐𝑜𝑢𝑛𝑡𝑠 +  𝑟𝑖𝑔ℎ𝑡_𝑐𝑜𝑢𝑛𝑡𝑠) / 2 

𝛳 = (𝑙𝑒𝑓𝑡_𝑐𝑜𝑢𝑛𝑡𝑠 −  𝑟𝑖𝑔ℎ𝑡_𝑐𝑜𝑢𝑛𝑡𝑠) / 𝑤ℎ𝑒𝑒𝑙_𝑏𝑎𝑠𝑒 

(𝑋, 𝑌) = (𝐷 ∗ sin(𝛳) , 𝐷 ∗ cos(𝛳)). 

Although this is theoretically simple, consistent values result only after 

calibrating this with the actual values. After consistent trials, a suitable 

constant of calibration was found out. It was also found that this 

constant 𝐾 depended heavily on terrain. An intelligent algorithm was 

developed which automatically averaged out the guessed constant 𝐾, from the data of another intelligent sensor as soon 

as the terrain was changed. The change of terrain control is so far manual. Whenever there is a change in the terrain, auto 

calibration mode is turned on which computes the constant 𝐾 by averaging in a window of 50 data samples. 

This data from the odometry is integrated with the pose and latitude longitude values obtained from the inertial navigation 

system using Extended Kalman filter. The EKF package present in ROS is used to localize the robot with these values. 

The localization error after applying EKF is reduced to less than 1m which is required for precisely reaching GPS 

waypoint in IGVC.   

7.4 Navigation 
The navigation module is entitled with the responsibility of calculating the correct target location to be used by the planner 

module. It subscribes to the various sensor publishers and depending on the strategy, chooses the right method for 

calculating the target. The planner works with a local map of 10m X 10m dimension. It can take a target only within this 

area. Any targets outside have to be appropriately truncated by the navigation module. The truncation method involves 

cutting the line joining the vehicle’s location and the actual target at a point which is at 50 centimetres from the boundary 

of the local map. This distance serves as a buffer for the planner while it tries to plan near the goal. 

The strategy used in IGVC test runs will be the IGVC_BASIC. In this case, all the sensors are active – both camera and 

lidar are plotting the obstacles into the local map. The target is set solely based on the next target location given by the 

GPS module. Heading information is used to find the pose of the target w.r.t the bot by transforming the raw target pose 

which is in the ENU (East - North - 

Up) coordinate frame. 

7.5 Planner 
The planning module is spread over 

two levels – Global Planner and 

Local Planner. The Global Planner 

takes the 8 GPS Way Point 

coordinates and is entitled with the 

task of finding the next best way 

point to go to immediately. Once 

the immediate target is set, the local 

planner plans paths up to the target, 
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till the vehicle reaches the immediate target way point. Once the path is planned, the controller is responsible for sending 

the right command to the bot and making sure that the vehicle does follow this path. 

7.5.1 Global Planner 
The global planner module maintains a list of targets in the 

form of latitude and longitude of the target way points. It 

maintains a variable to store the current target location and in 

each iteration, it checks the distance remaining between the 

current location of the vehicle and the current target. If the 

remaining distance goes below a certain threshold, another 

target is chosen and the variable is set to the new target. The 

target selection policy used for IGVC is the next closest target 

– pick the target whose distance to the current location is the minimum as the next target. Note that this module runs on 

a higher level than Navigation module and gives input to the Navigation Module. 

7.5.2 Local Planner 
In a nutshell, the local path planner implements the A Star (A*) algorithm to find the path between the vehicle’s pose and 

the target’s pose. One important deviation from the standard algorithm is that the grids have been replaced with a fixed 

set of splines (called seeds).  

7.5.2.1 Seeds 
The seeds are the idealization of the trajectory followed by the 

vehicle under the influence of a specific set of commands when 

simulated for a fixed amount of time. When constant velocities 

are used, these trajectories are circular arcs. These seeds are 

selected from an infinite set of possible seeds based on 

limitations like the minimum radius of curvature and the time 

taken by the planner when the seed set is used for planning 

which can be minimized at the cost of the optimality of the path 

being formed. The motivation behind replacing the grid based 

model with a fixed set of splines lies in providing a continuous 

smooth path avoiding abrupt locomotion commands which 

otherwise are capable of causing random fluctuations in the 

sensor data. 

7.5.2.2 Modified A* Algorithm 
The obstacles detected by lidar and the lanes detected by camera are both mapped as obstacles in the local map. During 

planning, we start at the current state which stores the position of the bot and explore all the neighbouring seeds and check 

if their states are already visited. If not, we add them to open list where they are stored in a priority queue in the non-

decreasing order of their total cost. From the open list the best state (i.e. state with minimum cost which is available 

readily at the beginning of the open list due to the priority queue property) is chosen for consideration. A walkability 

check is then applied which checks if there are no obstacles in its path. Once a neighbour state is cleared of all checks, it 

is added to the open list. This is continued till the target is reached. Once the target is reached the path can be reconstructed 

by backtracking the parent states starting from the goal state. 

Global 
Planner

•Input: GPS Way Point List

•Output: Next Immediate Target Way Point

Local 
Planner

•Input: Local Target

•Output: Plan

Controller

•Input: Command

•Output: Closed Loop Control of Velocity



7.5.2.3 Distance Transform 

One problem with a distance optimizing search (like A* search) is that it plans paths very close to the obstacles. As the 

locomotion errors are not taken into consideration while planning, there is definite possibility for the bot to collide with 

the obstacles. A safe path would take the bot away from the obstacles as much as possible – probably along the voronoi 

edges created by assuming the obstacles as the voronoi centres. This can be achieved by adding an extra cost to the cost 

function which represents the overall distance of the path planned so far to the nearby voronoi edges. 

7.5.2.4 Implementation 
Efforts are made to implement the data structures using the standard C++ Standard Template Library (STL). In order to 

avoid customization of these inbuilt functions, a clever workaround has been implemented to boost the speed of the 

planning algorithm. A Hash-Map is used to store membership of each state – whether it belongs to the open list / closed 

list. In the standard algorithm, in the event there are duplicate states with different costs, the higher cost ones are to be 

removed from the open list prior to inserting the least cost state. This step however requires sweeping the off the shelf 

priority queue supplied by STL. In our approach, all the duplicates are kept in the open list under the assumption that the 

least cost duplicate state is removed first. Then, on future removals, we can check for the membership of the state – if it 

belongs to the closed list, remove it from the open list and continue.  

7.5.2.5 Complexity 
Every access to the STL structures used in the module are of time complexity – 𝑂(ln 𝑛), where, 𝑛 is the size of the open 

list. This leads to a total complexity – 𝑂(n × ln 𝑛). This was a considerable improvement over the planning algorithm 

used last year whose complexity was – 𝑂(𝑛2). 

 

 

 

 

 



8 Performance Analysis 
Parameter Expected 

Values 

Maximum Speed 0.75 m/s 

Ramp Climbing Ability 30° 

Response Time  0.1 seconds 

Battery Life  1.6 hours 

Obstacle Detection Range  4 m – 5 m 

Localization Accuracy 2.5 m 

9 Vehicle Cost 
Equipment Used Specification Actual Cost  

(US $) 
Cost to Team  

(US $) 

VectorNav  GPS/INS * 2.5 m Horizontal Accuracy 3000 75 

9 DOF IMU ** 5° Dynamic Accuracy 110 110                                                                                                               

Kinect 4 m – 5 m Range 240 0 

Aluminium Bars 20 mm × 20 mm 370                           370 

Lead Battery 2 hour backup 90 90 

Chassis Material  465 465 

Colour Camera ** 30 Frames per Second 110 110 

Roboteq Motor Controller 2x60 Amp 425 425 

Motors 111 in-lb., 86 RPM 1700 1700 

Lidar 4 m Range 1700 1700 

Motor Driver + ATmega32 
Controller ** 

20 Amp 150 0 

Powered USB Hub 7 USB Ports, 1 Amp 40 40 

Wireless RC Remote 1 km, 6 Channels 75 75 

Machining  930 930 

Wheels 8 in Diameter 20 20 

Laptop i5 processor,  

4 GB RAM,  

1 GB Graphics Card 

930 0 

Wi-Fi Router 150 Mbps 30 0  

Total  9810 (USD) 6100 (USD) 

* - sponsored 

** - reused from last year 

10 Conclusion 
Team Eklavya designed the Eklavya 2.0 with an aim to excel the challenges put forward by the IGVC-2013 and to provide 

a platform for research in the field of Autonomous Ground Vehicles. The team’s effort and innovation is neatly reflected 

in the improvements on Eklavya 1.0 which reflect the strength of the Autonomous Ground Vehicle Research Group (Team 

Eklavya), IIT Kharagpur. Having achieved the goals set at the beginning of the year, the team is looking forward to 

contributing the ongoing research in the field of Autonomous Ground Vehicles and building a driverless car. 
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